【荣誉】PPIO云边资源优化框架收录于CCF-A级IEEE INFOCOM2022

摘要:近日,由PPIO边缘云联合创始人王闻宇(原PPTV联合创始人)以及PPIO边缘云首席科学家王晓飞(天津大学教授,国家级青年人才)提出的云边资源优化框架“EdgeMatrix”收录至CCF-A级国际顶级学术会议IEEE INFOCOM2022。

【荣誉】PPIO云边资源优化框架收录于CCF-A级IEEE INFOCOM2022

摘要:由PPIO边缘云联合创始人王闻宇(原PPTV联合创始人)以及PPIO边缘云首席科学家王晓飞(天津大学教授,国家级青年人才)提出的云边资源优化框架“EdgeMatrix”收录至CCF-A级国际顶级学术会议IEEE INFOCOM2022。

本文截取文章中部分重点内容供大家阅读。

中国计算机学会(CCF)

CCF是中国计算机学会(China Computer Federation ,简称CCF),成立于1962年,是国内首个中国计算机领域的全国一级学会,代表了国内计算机行业的最高级别产学研团体。CCF针对国际知名学术会议和期刊进行了分级评定,其中A级收录个数占比仅为13.9%,计算机网络领域的A级会议总共有4个,IEEE INFOCOM则位居其中,是计算机网络领域40年来权威的学术大会。

IEEE INFOCOM是全球网络通信领域学者的盛会、大会,因为其规模宏大、收录论文包罗万象、评委团阵容强大,数百人的评委团几乎包括了全球网络通信领域所有一流的研究者。INFOCOM对其论文的质量要求严格:新颖、有价值、观点清晰、证据合理,因此正式论文的录取率近几年一直控制在20%以下,其中2022年全球范围内仅录取了227篇。

PPIO边缘云

PPIO 边缘云于 2018年成立,由 PPTV 创始人姚欣和首席架构师王闻宇联合创立,秉承“汇聚全球计算资源”的使命,在网络边缘侧基础设施上建构边缘云计算服务。中国领先的独立边缘云服务提供:PPIO 边缘云在全国1000 多个县市及区域 ,为客户提供符合低时延、高带宽、海量数据分布处理需求的边缘云计算服务和解决方案。

PPIO边缘云是云计算能力由中心云向边缘侧的下沉,同时架构上基于边缘云原生技术,可实现与传统中心云的兼容协同,已成为多家互联网巨头、一线云计算服务商、独角兽级创业公司,在边缘云服务领域的主要合作伙伴。

为方便读者阅读,编者已将该论文的重点内容翻译为中文供感兴趣的读者阅读,或点击arxiv链接:https://arxiv.org/abs/2203.10470 获取。

(注:论文版权归属IEEE INFOCOM大会及IEEE版权方,本论文于arxiv的分享只体现学术贡献与分享目的,未经许可禁止用于商业用途。)

边缘云系统有望对海量异构的网络设备进行有效管控,真正实现无处不在的计算。然而,对于服务提供商而言,复杂的网络环境为保证服务等级协议(Service Level Agreement, SLA)带来了诸多挑战:多资源异构、资源竞争和网络系统动态。在本文中,我们为边缘云系统设计了一个框架EdgeMatrix,

如图1,以保证多种SLA的同时最大化系统吞吐量。

首先,EdgeMatrix引入了网络化多智能体演员-评判家算法,将物理资源重新定义为逻辑隔离的资源组合,我们称每一个资源组合为一个cell。

然后,我们使用聚类算法将具有相似特征的cell分成不同的集合,每一个具有相似特征的cell集合称之为一个channel,其中不同的channel可以提供不同的SLA保证。

此外,我们设计了一种多任务机制来解决边缘云集群之间的联合服务编排和请求调度问题,与传统方法相比,显著减少了运行时间。

最后,为了保证系统稳定性,EdgeMatrix采用了双时间尺度框架,即在大时间尺度上协调资源和服务,在小时间尺度上调度请求。基于真实追踪数据的实验结果,验证了EdgeMatrix在复杂网络环境下具有「提高系统吞吐量,减少SLA违规,比传统方法显著减少运行时间」等优势,如图5。

动机与挑战:在云计算中,服务提供商可以基于SLA向用户提供可靠的服务。在本文中,我们基于云计算中的SLA思想,提出EdgeMatrix,它可以使边缘云系统在复杂网络环境下为用户服务提供强有力的SLA保证。

尽管在边缘云系统中基于SLA为用户提供可靠的服务可以显著提高系统效率,但在具体实施过程中仍面对三个固有的挑战:

(i) 多资源异构:地理分布的边缘节点具有不同的计算能力、通信能力和系统架构;

(ii) 资源竞争:不同类型的服务有不同的资源需求,造成不同服务之间的资源竞争,从而影响请求的服务效率;

(iii) 网络系统动态:由于用户需求和网络设备的随机波动,网络系统的请求负载和可用资源处于不断的动态变化中。因此,目前边缘云系统迫切需要资源重新定义的架构来满足用户的SLA。

技术挑战和解决方案:在本文中,为了更好地应对边缘云系统的三个固有挑战,我们的工作重点是资源定制、服务编排和请求调度,如图2。

资源定制:网络化系统的多资源异构性给边缘云系统中用户提供可靠服务带来了严峻的问题,因为异构边缘节点增加了服务编排和请求调度的不确定性。设计传统方法来考虑系统中大量的异构节点是具有挑战性的,即大量的约束导致算法过于复杂甚至无法解决。

因此,我们引入了网络化多智能体演员-评判家算法,为边缘云系统中的各种用户服务提供定制的隔离资源,通过离线集中训练和在线分布式执行提供轻量级模型并提高系统稳定性。具体来说,我们将边-边节点(横向)和边-云节点(纵向)的资源进行定制,形成逻辑上隔离的资源组合,称为边-云系统中的cell。

我们进一步将具有相似特征(资源、延迟等)的一组cell称为channel,这意味着每个资源通道对应一种SLA。宏观上,channel也可以分为横向和纵向两类。如图1所示,我们将此框架称为 EdgeMatrix。

服务编排:服务之间的资源竞争会导致SLA得到保证的请求数量减少,即吞吐量减少。想象一个场景,一个服务占用了一个节点上的大部分内存资源,在这种情况下,即使其他服务只需要很少的内存资源,编排也会受到严重的不利影响。因此,我们设计在EdgeMatrix中基于混合整数线性规划,解决多种资源异构下的服务编排问题,以减少资源竞争的负面影响,并通过并行运行多任务机制显著减少解决方案的运行时间。

请求调度:网络系统的动态对调度算法的适应性提出了重大挑战。请求调度是确定请求是否可以被成功服务的最后一个环节。面对网络化的系统动态,请求调度算法的设计对系统的鲁棒性起着至关重要的作用。具体来说,为了保证系统的稳定性,我们采用了双时间尺度框架来协调EdgeMatrix内的每个组件,如图3、图4所示:在大时间尺度(frame)依次进行资源定制和服务编排,在小时间尺度(slot)进行请求调度。

性能与评测:我们基于真实的数据集得出的数据表明EdgeMatrx能够很好的应对边缘云系统中的多资源异构性、资源竞争、网络系统动态性这三个问题。例如我们通过调整节点之间的资源方差以设置不同的资源异构性,实验结果显示EdgeMatrix在资源异构性最强比最弱情况下的系统性能仅下降了3.9%。此外,相较于在传统的系统中执行服务编排和请求调度,在EdgeMatrix的环境中执行这两步操作所需求解时间降低了数十倍。

PPIO将一如既往的将先进算法、技术与实际边缘云系统落地领域,做出持续的努力与卓越的贡献,特别针对K8S@edge、AIOps@Edge和SDN@Edge三项技术体系展开介绍。


01

异构服务的统一编排——K8S@Edge

K8s@Edge敏捷部署系统,可基于原生Kubernetes提供以容器为核心的管理服务,完全兼容原生Kubernetes,具有安全隔离、高资源利用率、秒级弹性、轻运维与灰度发布功能,支持统一编排、业务快速接入,能够服务于客户轻松实现云边一体化协同。

02

边缘云系统的自动化运维——AI Ops@Edge

AI Ops@Edge基于大数据和人工智能的智能调度算法,使资源在细颗粒度下进行精确调度,可提升资源的利用率。具体来说,PPIO研发了一整套经济学的撮合机制,参考了博弈论的知识,既考虑供给节点的效益,也考虑需求业务的效益,建立了一套交易和调度模型,大大降低了错误调度、重复调度,使得系统内资源利用率以及整体调度效率得到有效提升。

03

资源虚拟化技术——SDN@Edge

SDN@Edge重构了服务器间的网型架构,建立一套高效虚拟的传输网络,降低传输成本50%以上,使容忍弱网环境成为可能,从而提升用户体验。我们采用数据驱动的多点下载技术和抗网络丢包的弱网传输技术,在播放超高清视频的时候,流畅度比传统CDN提高300%以上。

Read more

PPIO首发上线DeepSeek-V3.1-Terminus

PPIO首发上线DeepSeek-V3.1-Terminus

刚刚,PPIO 首发上线 DeepSeek-V3.1 的更新版本 DeepSeek-V3.1-Terminus!该版本的模型输出效果相比前一版本更加稳定。 此次更新在保持模型原有能力的基础上,针对用户反馈的问题进行了改进,包括: * 语言一致性:缓解了中英文混杂、偶发异常字符等情况; * Agent 能力:进一步优化了 Code Agent 与 Search Agent 的表现。 “Terminus”源自拉丁语,意为“终点、完结”之意,或许代表了 DeepSeek V3 这一大版本的最终更新,后续的更新或将开启新版本。 快速入口: https://ppio.com/llm/deepseek-deepseek-v3.1-terminus 开发者文档: https://ppio.com/docs/model/overview DeepSeek-V3.

By PPIO
PPIO首发上线Qwen3-Next-80B-A3B

PPIO首发上线Qwen3-Next-80B-A3B

今天,阿里通义千问发布了下一代基础模型 Qwen3-Next-80B-A3B,该模型已经首发上线 PPIO! Qwen3-Next 系列采用了“混合注意力机制”——引入业内前沿的“线性注意力机制”,与经典的“全注意力机制”混搭使用,该架构专为极长上下文和超大规模参数性能而优化。 现在,PPIO 上线了 Qwen3-Next-80B-A3B-Instruct 和 Qwen3-Next-80B-A3B-Thinking,其上下文长度为 64k,价格为每百万 tokens 输入,每百万 tokens 输出。 前往 PPIO 官网或点击文末阅读原文即可体验,新用户填写邀请码【LYYQD1】注册可得 15 元代金券。 # 01 Qwen3-Next 的架构创新 Qwen3-Next 系列代表了 Qwen 系列下一代的基础模型,专为极长上下文和超大规模参数性能而优化。 这一系列引入了一套架构创新,旨在最大化性能的同时最小化计算成本: * 混合注意力(Hybrid Attention):用

By PPIO
一文看懂2025年Agent六大最新趋势|AI专栏

一文看懂2025年Agent六大最新趋势|AI专栏

2025 年被称为通用 Agent 元年。从 Manus 到各类 Deep Research 产品,掀起了 Agent 热潮。 按照 OpenAI 的定义,通往 AGI 之路有五个阶段,而 Agent 正值 L3 阶段。 PPIO AI 专栏基于过去三年模型与 Agent 生态的技术进展,总结了 Agent 行业的最新六大趋势,分别是: 1. 什么是 Agent “套壳”,以及为什么套壳被严重低估 2. Agent 定义:广义的 Agent 面向企业级,狭义的 Agent 面向消费级 3. 代码模型是当前阶段推动 Agent

By PPIO
PPIO姚欣出席首届AI国际人才峰会:AI落地需先找对“钉子”再选好“锤子”

PPIO姚欣出席首届AI国际人才峰会:AI落地需先找对“钉子”再选好“锤子”

8 月 26 日,由香港投资管理有限公司(下称 “港投公司”)与北京智源人工智能研究院(下称 “智源研究院”)联合主办的首届 “AI 国际人才峰会” 在香港成功举办。香港特别行政区政府财政司司长陈茂波、港投公司行政总裁陈家齐、智源研究院理事长黄铁军等出席并致辞。 峰会还汇聚了加拿大皇家科学院院士张大鹏教授、美国国家工程院院士 David Srolovitz 教授、英国皇家工程院院士 Sethu Vijayakumar 教授等全球人工智能领域顶尖专家、海内外青年学者,以及不同产业的 AI 初创企业,共同围绕 AI 前沿技术发展、产业实践以及生态建设展开交流互动。PPIO 联合创始人兼 CEO 姚欣受邀出席峰会并发表题为《从 PPTV 到 PPIO:赋能全球 AI 创业者》的演讲,从自身创业经历出发,同与会者分享 AI 时代创业者所需的特质。

By PPIO